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A critical assumption in CT

� Clinical trial (CT) analyses assume that patient characteristics & treatment effects
are constant during time.

� In long trials - lasting several years - ‘events’ can modify the target populations.

Characteristics can vary over time & we need to account for this in the data analysis.

Causes

Example: While enrolling patients a concurrent trial targeting a sub-group of patients
start enrolling patients as well.

Another example is offered by the recent pandemic of COVID-19.

Consequences

� Standard techniques for testing and estimation do not account for these changes.

� Changes in patients characteristics can bias treatment effect estimates and in-
flate type I error rates of standard testing procedures.

Effect on trial data

Variation in patients characteristics over time leads to trends in the response rate.
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Solutions?

If all varying patient characteristics are observed → conditioning.
Else we can try to estimate trends.

Method 1: GAMs

We leverage flexible Generalized Additive Model to estimate trends of unknown
patient characteristics

πa(t, x) = F
(
θ0 + γa1{a > 0} + f(t) + ξx

)
,

� f(t) is an unknown function of the enrollment time t.

The main advantage is parsimony → treatment effect can be tested using γa via:

H0,a : γa ≤ 0, v.s. H1,a : γa > 0,

rather than functionals of πa(t, x).

We choose f as a smoothing spline, estimating the model via penalized log-likelihood.

Method 2: A biased adjusted test procedure

We start from γ̂a & ‘adjust’ its value:

γ̂adj

a = γ̂a − E[γ̂a − γa | ∆a]
∧

,

� ∆a = d(T a,T 0) that quantifies the unbalance between the empirical distributions
of enrollment times.

� We use ∆a = T a − T 0 as proxy for the imbalance of the patient profiles.

A robust test is
H0a : γadj

a ≤ 0 v.s H1a : γadj
a > 0,

γ̂adj

a = {γ̂a − Σ̂12Σ̂
−1
22 ∆̂a}/{Σ̂11 − Σ̂12Σ̂

−1
22 Σ̂21}1/2 ∼ N(0, 1).

� Asymptotic distribution is derived via CLT + multivariate delta method.

� If ∆a ≈ 0: γ̂a remains in-adjusted (standard procedure).

� ∆a can quantify the effect of other covariates beside time.

Inference

How do we do inference under adaptive design?

� Bootstrap procedures can be reliable in a variety of designs - still rely on some
assumptions!

� Asymptotic approximations depending on the considered design.

Key property of the design: allocation probability for each arm pa > 0, i.e.
asymptotically we keep accumulating information for each arm.

Example: Glioblastoma study

� Yi: 12 month survival; two datasets N = 150 trial & 320 external controls.

� Treatement: temozolomide in combination with radiation therapy (TMZ+RT) - the
current SOC.

� The datasets include patient-level data: age, gender, Karnofsky performance status
(KPS), and extent of tumor resection.

Generate the studies

Enrolled Population: select a patient record (Yi, Xi)
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Induces a trend t→ πa(t): KPS and gender correlate with survival.

Randomization: We assigned treatments, Ai ∼ p(Ai|D1:i−1), according to a multi-
arm BAR.

Effective arms: To introduce positive effects we randomly relabel negative outcomes
(Ai = 1, Yi = 0) on arm 1 into positive outcomes (Ai = 1, Yi = 1).

Some results

Two sets of analysis:

1. We simulated the GBM trial - all patient characteristics available & used for analysis.

2. In the second setting, the KPS is not available for data analysis.

We show results from 5,000 replicates of the described study, with target α = 0.10

No Covariates

Method Arm 1 Arm 2

Z-Test 0.908 0.230
L-Test 0.587 0.083
A-GAM 0.588 0.107
B-GAM 0.600 0.096

With KPS

Method Arm 1 Arm 2

Adj-Z-X 0.638 0.120
A-GAM-X 0.629 0.121
B-GAM-X 0.618 0.107
A-GAM-X-E 0.640 0.102
B-GAM-X-E 0.645 0.099

� Proposed correction: right type I error.

� Covariates and External data increase
power.

Without KPS

Method Arm 1 Arm 2

Adj-Z-X 0.604 0.099
A-GAM-X 0.610 0.112
B-GAM-X 0.601 0.099
A-GAM-X-E 0.620 0.100
B-GAM-X-E 0.622 0.096

Conclusions

We proposed:

� Testing procedures ‘robust‘ to variations of patient characteristics over time.

� Combined the proposed framework with known confounder corrections.

� + External Data

� We focused on BAR but applicable to a broad class of adaptive designs.

Important: no loss of power when f(t) ≈ 0.


