Inference in response-adaptive trials when the patient population varies during time

Massimiliano Russo, Steffen Ventz, Victoria Wang & Lorenzo Trippa m_russo@hms.harvard.edu

Variation in patients characteristics over time leads to trends in the response rate.

References

- Russo, M., et al., Inference in response-adaptive clinical trials when the enrolled population varies over time. (submitted)
- Jiang, F., et al., Robust alternatives to ANCOVA for estimating the treatment effect via a randomized comparative study, JASA, 2018.
- Wood, S., Thin plate regression splines, JRSS-B, 2003,

If **all** varying patient characteristics are observed \rightarrow conditioning. Else we can try to estimate trends. NO TREND ک _{0.5}

We leverage flexible **Generalized Additive Model** to estimate trends of unknown patient characteristics

TIME

Solutions?

 $\pi_a(t, x) = F(\theta_0 + \gamma_a 1\{a > 0\} +$ **f**(t) is an unknown function of the enrollment time t.

The main advantage is **parsimony** \rightarrow treatment effect can be tested using γ_a via: $H_{0,a}: \gamma_a \leq 0, \text{ v.s. } H_{1,a}: \gamma_a > 0,$

rather than functionals of $\pi_a(t, x)$.

We choose f as a smoothing spline, estimating the model via penalized log-likelihood. Method 2: A biased adjusted test procedure

We start from $\widehat{\gamma}_a$ & 'adjust' its value:

 $\widehat{\gamma}_{a}^{\text{\tiny adj}} = \widehat{\gamma}_{a} - \mathbb{E}[\widehat{\gamma}_{a} - \gamma_{a} \mid \Delta_{a}],$

- $\Delta_a = d(\mathbf{T}_a, \mathbf{T}_0)$ that quantifies the unbalance between the empirical distributions of enrollment times.
- We use $\Delta_a = \overline{T}_a \overline{T}_0$ as proxy for the imbalance of the patient profiles.
- A robust test is

 $H_{0a}: \gamma_a^{\mathrm{adj}} \leq 0 \quad \mathrm{v.s} \quad H_{1a}: \gamma_a^{\mathrm{adj}} > 0,$ $\hat{\gamma}_a^{\text{\tiny adj}} = \{\hat{\gamma}_a - \hat{\Sigma}_{12}\hat{\Sigma}_{22}^{-1}\hat{\Delta}_a\} / \{\hat{\Sigma}_{11} - \hat{\Sigma}_{12}\hat{\Sigma}_{22}^{-1}\hat{\Sigma}_{21}\}^{1/2} \sim N(0, 1).$ ■ Asymptotic distribution is derived via CLT + multivariate delta method.

- If $\Delta_a \approx 0$: $\widehat{\gamma}_a$ remains in-adjusted (standard procedure).
- \blacksquare Δ_a can quantify the effect of other covariates beside time.

Inference

How do we do inference under adaptive design?

- Bootstrap procedures can be reliable in a variety of designs still rely on some assumptions!
- Asymptotic approximations depending on the considered design.
- Key property of the design: allocation probability for each arm $p_a > 0$, i.e. asymptotically we keep accumulating information for each arm.

$$\mathbf{f(t)} + \xi x \Big),$$

- current SOC.
- (KPS), and extent of tumor resection.

Generate the studies

Enrolled Population: select a patient record (Y_i, X_i)

 $x_{j,\ell}^{(0)} \in \{0,1\}, \ell = 1,2$: patient's gender & KPS (1 if ≥ 80), Induces a trend $t \rightarrow \pi_a(t)$: KPS and gender correlate with survival.

arm BAR.

Effective arms: To introduce positive effects we randomly relabel negative outcomes $(A_i = 1, Y_i = 0)$ on arm 1 into positive outcomes $(A_i = 1, Y_i = 1)$.

Some results

Two sets of analysis:

1. We simulated the GBM trial - all patient characteristics available & used for analysis. 2. In the second setting, the KPS is not available for data analysis.

We show results from 5,000 replicates of the described study, with target $\alpha = 0.10$

No Covariates		
Method	Arm 1	Arm 2
Z-Test	0.908	0.230
L-Test	0.587	0.083
A-GAM	0.588	0.107
B-GAM	0.600	0.096
With KPS		
Method	Arm 1	Arm 2
$Adj extsf{-}Z extsf{-}X$	0.638	0.120
A-GAM-X	0.629	0.121
B-GAM-X	0.618	0.107
A-GAM-X-E	0.640	0.102
B-GAM-X-E	0.645	0.099

Conclusions

We proposed:

- + External Data

Important: no loss of power when $f(t) \approx 0$.

Example: Glioblastoma study

 \blacksquare Y_i: 12 month survival; two datasets N = 150 trial & 320 external controls. Treatement: temozolomide in combination with radiation therapy (TMZ+RT) - the

The datasets include patient-level data: age, gender, Karnofsky performance status

 $Pr\left((Y_i, X_i) = (y_j^{(0)}, x_j^{(0)}) | T_i = t\right) \propto p_1\left(x_{j,1}^{(0)}, t\right) \times p_2\left(x_{j,2}^{(0)}, t\right)$

Randomization: We assigned treatments, $A_i \sim p(A_i | D_{1:i-1})$, according to a multi-

- Proposed correction: right type I error.
- Covariates and External data increase power.

Without KPS			
Method	Arm 1	Arm 2	
$Adj ext{-}Z ext{-}X$	0.604	0.099	
A-GAM-X	0.610	0.112	
B-GAM-X	0.601	0.099	
A-GAM-X-E	0.620	0.100	
B-GAM-X-E	0.622	0.096	

Testing procedures 'robust' to variations of patient characteristics over time.

Combined the proposed framework with known confounder corrections.

• We focused on BAR **but** applicable to a broad class of adaptive designs.

